
Deadlock Analysis with Fewer False Positives

Thread T1:

sync(G){
sync(L1){
sync(L2){}

}
};
T3 = new T3();
j3.start();
J3.join();
sync(L2){
sync(L1){}

}

Thread T2:

sync(G){
sync(L2){
sync(L1){}

}
}

Thread T3:

sync(L1){
sync(L2){}

}

Lock(T1,G)
Lcck(T1,L1)
Lock(T1,L2)
...
Start(T1,T3)
Lock(T2,G)
Lock(T2,L2)
Lock(T2,L1)
...
Lock(T3,L1)
Lock(T3,L2)
...
Join(T1,T3)
Lock(T1,L2)
Lock(T1,L1)
...

Execute instrumented version
of program and extract execution trace

L1 L2

T3,{},(4,4)

T1,{G},(1,1)

T1,{},(2,2)

T2,{G},(3,3)

Compute
graph of
lock
hierarchies

Issue
warnings
for all
proper cycles

Deadlock?

no yes

Multi-threaded program

Program deadlocks between T2 and T3
Algorithm builds lock graph from trace
Deadlock potentials show as cycles in graph
Cycle freedom is by far easier to test

Old algorithm reports 4 deadlocks, 3 false
New algorithm only reports 1 (the real one)
Hence algorithm reduces false positives
This means less time spent by programmer

Deadlock Analysis with Fewer False Positives

The Problem of Non-Determinism
Multithreaded software is non-deterministic.
Some executions may exhibit a bug, eg. a deadlock,
while others may not. Standard testing may therefore
not reveal the bug.
The Solution of Runtime Analysis
Runtime analysis examines a single execution trace
for the “footprints” of bugs; eg. cycles in a lock graph.
A bug usually leaves prints in most execution traces,
even if the executions do not exhibit the bug.
Our Improved Runtime Analysis Algorithm
Standard runtime analysis of deadlocks yields false
positives. New algorithm reduces number of false
positives by using labeled lock graphs.

Case Study results
K9 rover: Found one unexpected
deadlock, confirmed one data race,
and found all seeded deadlocks and
data races.
DS1 Attitude Control System: Found
two unexpected data races, and all
seeded data races.

Explanation of Accomplishment
• POC: Klaus Havelund (ASE group, Code IC, havelund@email.arc.nasa.gov)
• Background: Concurrency-related errors in multi-threaded mission software often

manifest themselves only by intermittent bugs and hence are difficult to find by testing.
Runtime Analysis is a solution; it is a technique that analyzes the trace of a single
execution of a program, inferring possible problems in other executions. It scales well
to large programs. The standard runtime analysis algorithm detects possible deadlocks.
However, it suffers in that it reports many false positives. This requires the user to
investigate deadlocks that cannot actually appear, making the technique less usable.

• Accomplishment: We have developed an enhanced runtime analysis algorithm for
deadlock detection that issues fewer false positives. It reduces the problem of finding
deadlocks to finding a cycle in a labeled graph that describes the lock hierarchies
appearing during execution. This algorithm, and a data race detection algorithm, have
been implemented in the Java PathExplorer (JPaX) runtime verification tool. JPaX has
been applied to two major case studies. The K9 rover developed at Ames was analyzed
after having been seeded with deadlocks. All deadlocks were found. An early version
of the algorithm found an unexpected deadlock in the K9 rover. JPaX has also been
applied to the Deep-Space 1 attitude control system. This system was cycle free, but
two unexpected data races were identified.

• Future Plans: We are currently extending the capability of JPaX to be able to detect
other kinds of concurrency errors. Currently we are implementing an algorithm for
detecting higher level data races. Errors in the Remote Agent found by the POC were
caused by such higher level data races. We are also extending the tool to find other
forms of deadlocks, also referred to as communication deadlocks. JPaX furthermore
includes a capability for checking conformance of an execution trace with a user
provided requirements document. Future work includes improving this framework.

